
UCRL-ID-146037

Modern Tools for Modern
Software

G. Kumfert, 1. Epperly

October 31,2001

U.S. Department of Energy

Livermore
National
Laboratory

.

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Govermnent or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: repot ts@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: //www.llnl.gov / tid/Library.html



Modern Ibols for Modem Software

Gary Kumfert and Tom Epperly

October 31,2001

Abstract

This is a proposal for a new software configure~build tool
for building, maintaining, deploy#lg, and installhlg soft-
ware. At its completion, this new tool will replace current
standard tool suites such as autoconf, automake,
l ibtoo l, aad the de facto standard build tool, make.

This ambitious project is" born out of the realization
that as scientific software has grown in size and com-
plexity over the years, the difficulty of configuring and
building software has increased as well. For high per-
formance scientific software, additional conlplexities of-
ten arises front the need for portability to mnltiple plat-
forms (including many one-of-a-kind platfornls), nlulti-
language implementations, use of thitzl party libraries,
and a need to adapt algorithms to the s7)ecific features of
the hardware. Development of scientific software is being
hampered by the quality of configurution and build tools
commonly available, b~ordinate amounts of time and ex-
pertise are required to develop and maintain the configure
and build system for a moderately complex project. Better
build and configure tools’ will increase developer produc-
tivity. This proposal is" a first step ia a process of shoritN
up the foundation upon which DoE software is created
and used.

1 Introduction

This proposal is about scalability: not of software run-
ning on parallel machines, but of the tools commonly used
to develop, deploy, aad install the parallel software. In
particular, this proposal focuses on how current configure
and build tools do not adequately scale for today’s scien-
tific software. A configure tool automatically discovers
the features of the hardware, operating system, and pre-
viously installed software that pertain to building a soft-
ware package on that system, A build tool converts source
material into end-use form. This typically includes trans-
lating source code to machine executable code (e,g, con-
verting C or FORTRAN 77 into a program that can be
run), installing files in a standard location, creating hu-
man readable documentation from source material, and
other transformations needed to translate source material

into end-use form,

The current best practices in the community use 25
year old software development tools that have been in-
crementally adapted in an attempt to extend their useful-
ness. This process of incremental adaptation has produced
something that can be made to work but requires con-
siderable amounts of developer time to maintain. Under
the sheer massiveness and complexity of today’s scientific
software, these tools are extremely unstable and fragile.
Most importantly, this frailty is infused into the software
it attempts to support,

Although there is inherent complexity in writing
portable software, surprisingly little of this complexity is
handled automatically by available software development
tools. Instead, software portability is managed on a per
project basis, demanding excessive time and expertise of
each development team. As time and expertise vary from
project to project, so does portability of software and ad-
herence to current best practices.

The DoE has a significant investment in scientific soft-
ware and rightly looks for ways to maximize the return on
that investment. Component technology is an advanced
software technique being explored to improve software
reuse and interoperability in scientific computing -- facil-
itating novel combinations of software. But this technol-
ogy addresses interoperability only at the programming
interface level. It does nothing to actually get software
to build correctly on a particular piece of hardware under
a particular operating system. Preliminary evidence sug-
gests that component technology, by virtue of its assump-
tion that software always installs trivially, actually raises
the demands on an already strained software development
infrastructure [ 10].

In addition to maintaining existing software, the DoE,
also continually funds new efforts to produce new soft-
ware. Ideally, the bulk of this funding would be spent
on developing new algorithms or new capabilities, not on
dealing with temperamental and fragile build tools. There
is no known research that assigns a percentage value to
how much DoE sponsored software development is spent
on robustness and portability issues. Anecdotal evidence
and personal experience seems to indicate that develop-
ment overhead grows at least as the square of the number



¯ of supported platforms.
Herein lies our argument in modern tools for modern

software: If better tools can reduce developers’ overhead
for supporting additional platforms from quadratic to lin-
ear, or even quasi-linear, then there can be a dramatic
increase in developer productivity, software can be snb-
stanfially more portable, and a major stumbling block for
component technologies would be removed; all with pro-
fessional grade tools.

We believe that the time has come to stop incremental
extensions to current tools, and start anew. There are new
languages, abstractions, assumptions, features, and theory
that can be built into new tools but could never be patched
into exiting ones.

Section 2 discusses the tool that we feel is at the heart
of our development scalability problem, a 25 year old tool
called make [6]. It is reasonable to wonder if make is
so old and so ineffective, why aren’t other alternatives
available.’? In fact, there are many alternatives, a sample
of which are cataloged in Section 3. While putting to rest
the argument that make can be vastly improved upon, this
section raises a different question: with so many alterna-
tives and no clear winner, what distinguishes our proposed
effort? This question is addressed in Section 4; highlight-
ing a strategy for accumulating user acceptance. We close
in Section 5 by discussing big picture issues related to this
project such as: how replacing make fits into a larger pic-
ture of software development, testing, deployment, instal-
lation, use and extension; how to gain user acceptance;
what is the potential impact inside and outside the DoE.

2 Build Tools

Current state-of-art for building software iu UNIX is to
use a lowest common denominator solution: a primitive
build tool developed in concert with the C language and
the UNIX operating system in the 1970’s called make [6].
Enticingly simple, most programmers learn to use it by
copying examples, never needing to pick up a tutorial or
reference book. It reads a file that enumerates target files,
what files they depend on, and commands to "make" the
target file. The commands are triggered whenever a de-
pendent file has a more recent timestamp, which implies
the target is out of date.

This build tool, make, doesn’t know abont directories,
source code revision, compilers, installing software, pro-
gramming languages, probing a new platform for its capa-
bilities, software testing, debugging, bug tracking, or any
other functions commonly associated with contemporary
software development. These higher level functions are
written into make’s rules -- largely by hand -- on a case
by case basis. This effort is repeated in a non-standard

way for almost every software project written in C, C++,
or F77 within the DoE.

Examining raake only for the task that it was intended
(refreshing stale files in the current directory) it still has
significant deficienciest. make only triggers commands
when it thinks files are out of date. It does not compensate
for clock drift across a networked file system or for times-
tamping details when dealing with a version control sys-
tem. In practice, developers can only be sure that every-
thing is built correctly by removing all targets and starting
from scratch, make has no mechanism for understanding
that a command may produce more than one target file. To
produce several targets, make will often execute the same
command multiple times to satisfy its dependency rules.
Perhaps most grievous is that the syntax of make’s input
flies (called Makefiles) is extremely error prone. One can-
not visually inspect a Makefile for correctness, because
whitespace (and even the type of whitespace) is signifi-
cant. Using space characters (i.e. ASCII 32) instead 
a tab character (i.e. ASCII 9) at the beginning of a line
changes how make treats the line. Furthermore, trailing
spaces at the end of a line can change the meaning of the
subsequent line.

3 Previous Attempts to Unmake

The current ubiquity of make is a fascinating example
of the importance of being first to market, even with an
inferior product. There have been, and still are, many at-
tempts by Academia and the Open Source community to
either improve make, or replace it outright.

The Free Software Foundation (FSF) arguably has the
most feature-rich implementation of make called GNU-
make [7]. Even so, they need layers of additional tools
such as autoconf, automake, and libtool [16]
to assist with configuration and building shared libraries.
This strategy is one of the most successful and powerful in
the Open Source community, but the proper orchestration
of these independently developed and maintained tools re-
quires an unreasonably high level of technical sophistica-
tion.

The X Windows2 community has their own software
build layer, irrtake [5, 8]. Other make variants include
nmake [12] from Bell Labs, dmake [4], and Open-
Make [13]. All of these have incremental enhancements

I The lore surrounding make is that it was build by a summer intern in
AT&T/Bell Labs over a week before taking a week’s vacation. When he
returned, so many people were using it that he was forbidden to change
its syntax.

2X Windows is the windowing software in UNIX a,d predates Mi-
crosoft Windows

2



’ such as parallel execution of rules, more robust depen-
dency checking, and other details, but still in keeping with
the nuts-and-bolts lack of abstraction in make.

Open Source examples of tools that completely replace
make-- many also attempting a higher level of abstrac-
tion -- are Ant: [1] which is a Java-based build tool re-
quiring developers to use XML, Cons [2] which is writ-
ten in perl, d-am-Make/Redux [9] which is has a small,
but loyal following, aud Cook [3] which has been devel-
oped and maintained for about 15 years.

Despite all of these (and many other) efforts to enhance
or outright replace make, none has succeeded in captur-
ing the majority share of the market. There are two main
reasons.

First, almost every UNIX or Linux system comes with
make installed as a fundamental tool, and even non-
UNIX evironments snpport make to some extent. Thus
software developers are confident that by using make they
can reach the greatest uumber of users. Using any non-
standard build tool becomes a significant percieved barrier
to widespread user acceptance. Thus many make alterna-
tives tend to be used in niche communities.

The second reason is specific to tl~e problem domain
of software build tools. There are thousands of ways to
get it wrong. While there is widespread agreement that
the current tools are bad, there is little agreement in what
critical feature set is needed. An illustrative sample of
these features is enumerated below3. Whenever we cite
make as having a weakness, it infects all the tools that
are built on top of make as well.

¯ Handle spaces in strings gracefully. Most tools in-
cluding make require excessive (and careful) quot-
ing of strings to preserve spaces within, Oara can’t
support them at all.

¯ Cope with one action generating multiple files.
Most tools including make (and therefore everything
built on top of make) can understand that a target file
has multiple dependencies, but cannot fathom that a
single action can produce several target flies.

¯ Cope with recursive bnilds. Most software exists
not as a single directory, but as a directory tree of
hundreds, sometimes thousands of files, make has
no built in concept of a directory. To compensate,
the topmost Makefile invokes make itself in subdi-
rectories. This admittedly gets the job done, but it is
excessively slow [14, 17] and error prone [11].

¯ Constructsharedlibraries. Thisshouldbeasimple
task that is made complicated by the fact that there

3A separate document providing a more encyclopedic "critical fea-
ture set" is available separately from the same authors.

are no standards for how this is done. Each com-
piler vendor/operating system/hardware tuple has a
different way of building a shared library, especially
for C++. For a tool to properly address this problem
alone would require an expert system with automatic
update capabilities.

¯ Manage partial development trees. Typical large
projects have individual coders or code-teams work-
ing on parts of the entire package. They would pre-
fer to have a reference implementation of the entire
package with a local copy of just their subtree, and
build their subtree against the shared reference.

¯ Build tool smarter than filesystem. Most build
tools (including make) does not have the sophistica-
tion to understand that two different Makefiles in two
different directories can refer to the same file through
different paths.

¯ Flexible rule handling. Build rules change on dif-
ferent platforms, make has no conditional branching
to change its behavior on different platforms. This is
accomplished in autoconf by actually creating make-
files from templates using simple text substitution.

Another notable effort to improve the current state of
tools is the Software Carpentry Project [ 15] sponsored by
CodeSourcery, LLC. and the Advanced Computing Labo-
ratory at Los Alamos National Labs. This project funded
a competition to design and implement open-source soft-
ware tools that supersede current tools in four categories:
configuration (e.g. autoconf), build (e.g. make), testing
(e.g. XUnit, Expect, and dejaGNU) and defect tracking
(e.g. gnats and bugzfila). This effort dictated that the tools
be implemented in Python or Python-based systems, they
adopt the project’s Open Source license.

Despite initial high expectations, the Software Carpen-
try project enjoys only modest success. The winning de-
signs for the testing and defect tracking tools are currently
being developed by CodeSourcery, LLC. The build and
configuration categories have both been abandoned after
the second round of design competition. Unfortunately,
both the scope and price tag of a solution were underesti-
mated at the competition’s inception.

4 Approach

We distinguish our effort from the others in several cate-
gories.

4.1 Establishing a Critical Feature Set

Establishing the "critical feature set" to make this project
successful is will be the subject of much research, experi-



mentation, COmmunication, and iteratiou. Thero is a sub-
stantial body of work already in print and working code on
the subject. We also have access to all of the documents,
reviews, and email from the Software Carpentry Project,
as well as the support from the project’s sponsors.

We will focus on developing a tool that is easier to use
from the software developers’ point of view. It wifi fo-
cua on day-to-day soflware development tasks, and be at
level of abstraction that is natural for developers. It should
make the hard cases easier and keep the simple cases sim-
ple.

Under lhe hood, the tool will have more advanced
gorlthms and data structures to handle the finer control
than eu~ently available. It wifi have graph algorithms
that handle a task having nmlfiple dependencies or mul-
tiple results. It will allow rules to be modifi~ by con-
fig~alion results, results of tasks, or other rules. It will
afiow triggering of rules to be dynamically assigned from
simple time-stamping, to comext-sensitive file analysis. It
will also allow the r~les used to generate a target to de-
pend on runfime details such as "~machiue load is low
and [ have IOOMB of memmy available, ~ebaiM com-
pletely, othe~ise jost patch the critical piece." [t will be
multi-threaded to handle parallel buikls, and this mul0-
threadiness will be reflected in its syntax and not tacked
on as an afterthought. It will also take the fo~ of a core
library ~o which various interfaces (e.g. X~, GUI, or
native ~thon) can be attached.

4.2 Solve a Real Worst-Case Problem

First and foremost, we have a real software build problem.
We have identified the Components project at Lawrence
Livermore National Laboratory as an ideal candidate.
This project has developed a tool called B abel that enables
C, C++, F77, Python, and Java codes to interoperate. Un-
fortunately, Babel does noticing to suppor~ the build and
installation of these interoperable pieces of software on
various flavors ofSolaris, Linux, OSF, AIX, and IRIX ma-
chines.

To configure and build the regression tests for this
project, the developers of Babel are currenfly using GNU
tools (GNUmake, autoconf, automake, and libtool), native
(language specific) build functionality (Python and Java),
and custom shell and perl scripts. Although their current
solution works, it is completely unstable. Over the course
of the last 1.5 years, their dominating cause of failure in
the nightly builds was not the Babel software they are de-
veloping, but the improper orchestration of all of these
build tools. Keeping the regression tests for this project
running on all platforms (at 3700 tests per platform) has
become a heroic developer effort, accounting for" at/east
one FTE of the 5 P’TE project.

The main concern of the Components Project, how-
ever, is that the solution for configuring and compiling
this language interoperable regression suite cannot easily
be reused by Babel’s cus turners. Software developers who
want to develop their own code using Babel will get the
generated source code, but will have to struggle through
their own build process. They do not (aud indeed cannot)
expect every code group who uses B abel to dedicate a per-
aura’year to learn the intricacies of GNUmake, automake,
autoconf, libtool and all our helper scripts just to deploy
and install language interoperable software.

We feel this is an ideal candidate to target our solu-
tion for. It has many desirable worst-case charecteristies:
multiple languages and multiple platforms. It already has
explored some of the most advanced configure/build al-
ternatives available and found them inadequate. It is alto
a project that we are both currently working on, so we al-
ready clearly understand the problems deeply and require
no ramp-up time.

4,3 Getting User Buy-In Early and Often

DoE developers do not trust software that does not have a
survival strategy.., and they do not use what they do not
trust.

Commercial software’s survival hinges on the viability
of the company and its ability to earn a consistent profit
on maintaining the product. Survival of closed DoE soft-
ware, depends on stable, long-term funding. Open-source
software’s survival strategy depends on garnering a "criti-
cal mass" of interested developer/users to share the burden
of code development and maintenance.

The best survival strategy for this project is the open-
source model. The reasons are legion. First and foremost;
!he dominant mode of distr butiun for scientific software
rs source code, whether it be Open-source or licensed.
Commercial build lools are plausible only when software
is distributed in binary form; necessitating that the burden
of software maintenance be solely on the original devel-
opers, and constraining the customer to a certain leveI of
platform homogeneity.

The tools we are attempting to replace are open stan-
dards supported by Open Source tools. It is extremely un-
likely that anything other than an Open Source tool could
supplant make beeause make is already everywhere. One
of the reasons people use make is because practically ev-
ery development environment comes with a make com-
patible build tool. To replace make, a new build tool must
become as common as make,

The biggest reason to court the favor of the OpenSource
community is to earn the trust of DoE developers, and
by earning their trust, we increase the potential for use.
There are certain practices and policies that encourage the



OpenSource community’s participation, but nothing can
guarantee it. To maximize our chances of community par-
ticipation in our project we propose the following actions.

¯ Licensing and copyright issues are showstoppers.
These issues must be resolvexl at the beginning of
the project. A standard Open Source or GNU license
is far superior to a custom one. Developers are not
lawyers. It is much easier for a developer to avoid
software with an unfamiliar license, than to hire a
lawyer to interpret it.

¯ Register the domaiu name wane. [fool .org,
where [:gool is the name of our (yet unnamed)
tool. Maintain this website as a central place for all
updates, news, and information regarding this tool.
(See www. pylzhon, ors for example.)

¯ Create an open repository on sourceforge, org
and maintain all sources and documentation at that
(remote) site. This allows anonymous users to down-
load the current state of the software at all times, and
it enables other developers to contribute to the soft-
ware. This woold require an exemption from the nm~
maI DoE Review and Release policies that require
each line of code to go through Review and Release
before being accessible off-site.

¯ Publish articles in trade journals (not scientific jour-
nals) to maximize number of software developers
who have heard about the project and know where
to find the website.

¯ Establish newsgroups and email forums for users and
developers to discuss, argue, design, and learn. Pro-
vide web archives of all discussions at the aforemen-
tioned homepage.

¯ Encourage operating system vendors, operating sys-
tem distributors and compiler vendors to include our
build tool in their distribution.

¯ (future) Identify an existing Open Source project and
convert its build system from make to our tool. One
of the original authors of autoconf did this same exer-
cise (he called it "autoconfiscating") with much suc-
cess.

¯ (future) Publish a book about using our tool with
an authoritative Open Source publishing house (e.g.
O’Reilly and Associates, or New Riders Publishing)

4.4 Metrics for Success

The goal of this project is to increase programmer pro-
ductivity. We propose replacing a vintage 1970’s devel-

opment tool with a more powerful and sophisticated suc-
cessor. We also predict that in doing so, we can contribute
to more robust, portable, and interoperable software.

Measuring our success in increased programmer pro-
ductivity is difficult and often requires duplication of ef-
fort in a controlled setting. Evidence to this effect, how-
ever can be reasonably inferred by tracking statistics such
as: number of downloads, number of registered projects
converting to our tool and abandoning make, number of
contributions from the open-source community (fixes and
extensions), and even setting up a computer outside our
firewall to receive a network ping every 50th time a user
actually uses our tool (with user’s consent).

Another metric for success is how well we solve our
real world, worst case problem identified in Section 4.2.
If they can use our tools successfully, and if our tools
make it easier for their customers to develop and deploy
language-interoperable code, then we have demonstrated
new functionality that is not in existing systems.

Publication is also a metric of success. Since this
is more of a programmer tool than a scientific research
project, we feel that trade journal publications should be
weighted highly. Since we are advocating an open-source
survival strategy for this project, we also think that trade
journals should be weighted according to number of sub-
scribers.

5 Summary

For this project, it’s world domination or nothing. If all
that comes out of this effort is yet another niche tool,
we’ve lost.

The DoE is a pathological worst-ease environment for
software development, but the best place to develop --
and perhaps in the most need of- our proposed tool.
The DoE has some of the most sophisticated software in
the world; also some of the longest lived, mathematically
intense, and scientifically obscure. It has software writ-
ten in a wide variety of languages, including custom lan-
guages. And this software runs on an even larger variety
of platforms, including many custom and one-of-a-kind
architectures.

As we continue developing higher-fidelity, multi-scale,
multi-physics simulations, there is a continuing need to
get all these pieces of software to fit together, often in
ways that the original authors never intended. This activ-
ity stresses not only the software itself, but the tools that
are used to build and maintain them. The breaking point,
as evidenced by the Components Project, is clearly on the
horizon.

Configuring and building software is a complicated, de-
tailed, and unforgiving process. If we can raise the level at
which developers articulate how their software should be



built, installed, and managed; if we can handle all of con-
figuration, compilation, linking, and installation of soft-
ware in one tool using one language; if we can convince
developers that there is a true make alternative, just as
universal, easier to use, less error prone, and more pow-
erful; and if we can provide a mechanism where develop-
ers can collect large numbers of independently deveIoped
software libraries and bind them together into an massive
parallel application with little or no difficulty, then we

have a chance of making a contribution that can last for
the next 25 years.

[15] Software carpentry home-
page. http : //software-
carpentry, codesourcery, com.

[16] Gary %L Vaughan, Ben Elliston, Tom Tromey, and

Ian Lance Taylor. GNU Automake Autoconf and
Libtool. New Riders Publishing, October 2001.

[ 17] Laura Wingerd and Christopher Seiwald. Construct-
ing a large project with jam. In Software Configura-
tion Management SCM7. International Conference

on Software Engineering, May 1997.

References

[1] Ant Website. j akarta, apache, org/ant.

[2] Cons Website. www. dsrait, com/cons.

[3] Cook Website. w~. canb. auug. org. au/-mi llerp/cook/cook, html.

[4] DMake Website. www. scri. fsu. edu/-dwyer/dmake, html.

[5] Paul DuBois and Gigi Estabrook. Software Portabil-

ity with Imake, Nutshell Handbooks. O’Reilly and

Assoc., 1996.

[6] Stuart I. Feldman. Make - a program for maintaining
computer programs. Software Practice attd Experi-
ence, 9(4):255-266, 1979. Revised April 1986.

[7] GNUmake Website.
WWW. gnu. org/manua i/make- 3.77/make. html.

[8] II%4akeWebsite. ~g~q.primate.wisc. edu/software/imake-

stuff/.

[9] Jam-Make/Redux Website.
w~q. perforce, com/j am/j am. h tml.

[10] Gary Kumfert, Bill Bosl, Tamara Dahlgren, Tom Ep-

perly, Scott Kohn, and Steve Smith. Achieving lxm-
guage lnteroperability Using Babel. CASC/ISCR
Workshop on Component and Object-Oriented
Technologies for Scientific Computing, Wente Vine-
yards, Livermore, CA, July 2001.

[11] Peter Miller. Re.cursive make considered harmful.

make-cons-har~a, html, 1997.

[12] NMake Product Builder. www.bell-

labs. com/proj ect/nmake.

[13] OpenMake Website. ~r~w. catsyscorp, com.

[14] Christopher Seiwald. Jam - make(l) redux.
www.per force, com/j am/doc / j am. paper, htral,
March 1994.


